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ABSTRACT

This paper presents the design and implementation of Wi-Fi Goes

to Town, the first Wi-Fi based roadside hotspot network designed to

operate at vehicular speeds with meter-sized picocells. Wi-Fi Goes

to Town APs make delivery decisions to the vehicular clients they

serve at millisecond-level granularities, exploiting path diversity

in roadside networks. In order to accomplish this, we introduce

new buffer management algorithms that allow participating APs

to manage each others’ queues, rapidly quenching each others’

transmissions and flushing each others’ queues. We furthermore

integrate our fine-grained AP selection and queue management into

802.11’s frame aggregation and block acknowledgement functions,

making the system effective at modern 802.11 bit rates that need

frame aggregation to maintain high spectral efficiency. We have

implemented our system in an eight-AP network alongside a nearby

road, and evaluate its performance with mobile clients moving at

up to 35 mph. Depending on the clients’ speed, Wi-Fi Goes to Town

achieves a 2.4–4.7× TCP throughput improvement over a baseline

fast handover protocol that captures the state of the art in Wi-Fi

roaming, including the recent IEEE 802.11k and 802.11r standards.
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1 INTRODUCTION

Every day, billions of commuters journey in and out of the world’s

urban centers: many by train, light rail, or underground transport,

others in vehicles that may soon become driverless in the coming

decade. Today this commute is often wasted time, but we look
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forward to a nearby future with great demand for high-capacity

wireless networks serving transportation corridors, allowing users

to surf the web, complete video and audio calls or teleconferences,

and stream video and music entertainment, all on the commute.

Surprisingly, compared with capacity gains from new technolo-

gies, Cooper [10] estimates—with broad consensus from cellular

wireless network operators—that the overwhelming majority of

capacity gains over the past 45 years can be attributed to simply

decreasing the size of each cell, the geographic area each access

point (AP) covers. However, moving to smaller cells immediately

sets up a tension between the two goals of capacity and range,

exacerbating the range problem mentioned above. This necessitates

a handover, where a number of APs cooperate to serve the client as

it moves from one AP to the next.

Roaming between Wi-Fi APs is standardized, with the recent

802.11r standard [22] enabling the client to make a connection with

another AP before abandoning the current: this is calledmake before

break. Other parts of the Wi-Fi standard, namely 802.11k [21], allow

the current AP to inform the client about other nearby APs and

channels, so that when the time comes for the client to abandon the

current AP, it may immediately begin the association process with

those APs, rather than discovering their existence from scratch.

But these solutions, and others we discuss below, are too slow for

the scenarios we consider here, necessitating larger cells and thus

clawing back smaller cells’ capacity gains.

Recently, however, two trends have arisen that may break this

stalemate: the first a reflection on recent research, the second a

consequence of Wi-Fi’s commoditization:

(1) Recent work has demonstrated that commodity Wi-Fi APs can

extract detailed channel measurements [18, 49], thus rapidly

predicting the AP or APs best suited to serve a client as it moves.

(2) Today, very low costWi-Fi chipsets such as the ESP8266 (Figure 1)

are arriving on the market for less than $5, making for the first

time very high-density Wi-Fi AP installations cost-feasible.

Figure 1: The ESP8266 Wi-Fi and system-on-chip module,

available ca. 2016 for $5.

In this work, we demonstrate a synergy between the above two

trends, resulting in an opportunity to transform the design of road-

side and metropolitan transit wireless networks with the wide-

spread deployment of an array of inexpensive “Wi-Fi picocell” APs,
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Figure 2: The vehicular picocell regime: Constructive

and destructive wireless multipath fading as measured by

Effective SNR (upper plot) conspire with vehicular-speed

mobility to change the AP best able to deliver packets to

a mobile client (lower plot) at millisecond timescales (right

detail view). The radio coverage between APs overlaps by

around 10 m.

each covering just a few meters of a busy urban transit corridor. But

such a design faces the fundamental challenge shown in Figure 2:

the wireless capacity (achievable throughput) to each AP exhibits

two well-known wireless trends as a mobile user drives past the AP

array. First, there is fading at second-level scales due to distance,

but second, there is rapid, millisecond-level fast fading due to alter-

nating constructive and destructive multipath propagation, on the

spatial scale of an RF wavelength, 12 cm at 2.4 GHz. Furthermore,

due to the dense deployment of APs in the array (necessary to

attain good coverage), the large-scale and small-scale fades overlap

in time to make the best choice of AP (shown below in the figure)

change everymillisecond.We term this combination of AP diversity,

vehicular client mobility, and meter-level AP cell size the vehicular

picocell regime.

This paper presents the design, implementation, and experimental

evaluation of Wi-Fi Goes to Town, a system that operates efficiently

in the vehicular picocell regime via a nearby controller exercising

tight control of the AP array, as shown in Figure 3. As users travel

at high speed through an underground tunnel or along a road, the

controller switches downlink traffic to several APs in the array, one

of which will be best able to deliver the packet to where the user’s

device will be tens of milliseconds later. When the packet reaches

the tail of an AP’s transmit queue and is ready for transmission

to the client, the APs communicate directly to agree which one

of them should actually attempt to deliver the packet. Since the

wireless channel is so unpredictable in the vehicular picocell regime,

with a coherence time (the period of time over which the wireless

channel remains stable) of ca. two-three milliseconds at 2.4 GHz

[47], Wi-Fi Goes to Town APs rely on lightweight channel state

information (CSI) readings from a client’s uplink transmissions,

from which they compute Effective SNR [18] (ESNR), and quickly

decide which AP should deliver the packet to the mobile. If the

chosen AP’s delivery attempt is successful, that AP cues the other

APs to dequeue and discard their copies of the delivered packet.

Content 
Server

Controller

Wide-area latency < 1 ms latency

Wi-Fi APs

25 mph5 m.

Figure 3: Wi-Fi Goes to Town architecture: cars moving at

25 mph spend about 460 milliseconds in each AP’s cell.

For traffic on the uplink from the mobile to the AP array, any AP

can receive each such packet, but the controller removes duplicate

packets in the event that more than one AP receives the same packet

from the client.

The first of two challenges involved in realizing actual wireless

performance gains in this setting stems from packet queuing, which

occurs in many network layers and software and hardware com-

ponents in Wi-Fi networks. A modest amount of queuing (ca. 20

milliseconds or 100 packets) in the operating system driver and/or

the Wi-Fi hardware itself allows modern 802.11 wireless link layers

to combine queued packets into larger aggregate packets. This ag-

gregation is critical to maintaining a high ratio of fixed per-frame

overhead (necessary to coordinate access to the wireless medium)

to useful data airtime as wireless data bit-rates increase. But frame

aggregation and sequence number-based block acknowledgements

lose their efficiency if the AP that receives a block acknowledge-

ment from a client differs from the one that sends the corresponding

downlink data. To address this problem, Wi-Fi Goes to Town intro-

duces mechanisms to share block acknowledgement state between

participating APs.

The second of the two challenges comes from packet buffering.

Buffering at higher layers, such as the operating system’s trans-

port-layer socket, allows applications to exploit asynchronous I/O.

However, while helpful in these regards, buffering at an individual

AP results in the transmission of a backlog of packets once the

controller has made a decision to switch away from that AP. As

we show in §3 (p. 5), buffering thus adds a significant latency to

the controller’s switching decision, a delay that is insignificant in

current AP handover systems and systems based on Multipath TCP

[15], but highly significant for the vehicular picocell regime. To

address the problem of controller-AP switching latency, Wi-Fi Goes

to Town maintains current amounts of buffering at APs, but intro-

duces hooks for the controller to dequeue pending packets buffered

at APs once it makes a switching decision. Microbenchmarks (§3)

quantify the performance impact of buffering and the benefits of

our fine-grained AP buffering control.

We have implemented Wi-Fi Goes to Town on commodity TP-

Link APs, with a single Linux controller running the Click modular

router [25]. Each roadside AP is equipped with a parabolic antenna

of beamwidth 21 degrees. We install the Atheros CSI Tool [49]

on each AP, which measures the CSI of each incoming frame and

forwards it to the controller for processing. Our implementation of

Wi-Fi Goes to Town is fully described in §4 below. For a comparison
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point running on the same hardware, we have also implemented

a performance-tuned version of the IEEE 802.11r and 802.11k fast

handover protocols in Click.

We have deployed eight Wi-Fi Goes to Town APs on the third

floor of an office building overlooking a nearby road. APs com-

municate with the controller via Ethernet backhaul. Experiments

compare Wi-Fi Goes to Town with a performance-tuned version

of the IEEE 802.11r and 802.11k fast handover protocol that cap-

tures the current state of the art in Wi-Fi handover techniques.

Our end-to-end experiments test three different traffic workloads

representative of commuting behavior: web surfing, video stream-

ing, and bi-directional video teleconferencing. Results show a 2.4–

4.7× improvement in TCP download performance and a 2.6–4.0×
improvement in UDP download performance as vehicular speed

ranges from five to 25 mph, and 2.4–2.6× improvement in TCP and

UDP download performance in a multi-client scenario. Microbench-

marks then investigate the effect of AP density and time hysteresis

for AP switching, presenting a sensitivity analysis of each of the

above parameters on overall system performance.

Contributions. Wi-Fi Goes to Town’s contributions are two-fold.

First, we design a fine-grained, highly responsive switching protocol

and AP selection algorithm to send packets over the best link at

millisecond-level timescales. Second, we integrate this rapid packet

switching mechanism with modern Wi-Fi’s frame aggregation and

block acknowledgement mechanisms, critical to achieving high

performance in modern 802.11 wireless networks.

Roadmap. The remainder of this paper first highlights the inability

of current state-of-the-art to operate in the regime of interest (§2),

then describes Wi-Fi Goes to Town’s design (§3). Our system’s

implementation (§4) and experimental evaluation in a real roadside

network testbed (§5) follow. §6 surveys related work in the area. §7

discusses future work, and §8 concludes.

2 WI-FI ROAMING AT DRIVING SPEED

Commercial Wi-Fi APs supporting the 802.11r [22] standard speed

client handovers from one AP to the next by allowing the client to

establish authentication with a new AP prior to de-associating with

the current AP. But 802.11r is tuned for walking speed mobility

with large cells. To understand its performance in the vehicular

picocell regime, we evaluate Linksys 802.11r-based APs [12] in

an outdoor roadside testbed (fully described in §4). The distance

between two APs is 7.5 m, and the cell size of each AP is 5.2 m. We

send a constant-rate stream of UDP packets using iperf3 [23] to an

iPhone 6S client in a car driving by first at five mph, and then at

20 mph.

Figures 4 (a) and 4 (b) plot the client’s reception of UDP packets

when it drives by AP1 and AP2 at 20 mph and 5 mph, respectively.

As a reference, we also plot the smoothed effective SNR (ESNR)

of these two client-AP links. In the 20 mph test, we identify a

re-association packet sent from the client to AP1 at around 4.6 s,

indicating that the client tries to switch to AP2. However, no acks

are identified at the client side even though the client retransmits

the re-association packet multiple times, and so the handover fails.

As the client moves further away fromAP1, link quality deteriorates

significantly, with the client receiving the last packet from AP1 at

approximately 4.8 s. The handover fails because 802.11r does not

AP1 AP2

(a) Client moving at 20 mph.

AP1 AP2

(b) Client moving at 5 mph.

Figure 4: Received sequence number (black curves) of a con-

stant-rate UDP flow at a mobile client in a roadside network

testbed at (a) 20mph speed, and (b) 5mph speed, respectively.

The solid vertical line in (a) denotes the time of the last UDP

packet reception, and the dashed vertical line in (b) denotes

the time the client switches to AP2. The dashed area shows

the accumulated channel capacity loss. The average capac-

ity loss is separately 20.5 Mbit/s at 20 mph and 82.2 Mbit/s at

5 mph.

make its switching decision until it collects a long 5 s history of RSSI

measurements [1], longer than the client spends within hearing

range of AP1 at 20 mph. As a result, by the time the client has

determined it should switch, the link condition of the current AP

has already deteriorated. The client successfully switches from AP1
to AP2 only in the 5 mph case, as shown in Figure 4 (b), but as can

be seen from the ESNR curves, the handover happens significantly

later than it should, resulting in the AP needing to decrease its

bitrate, sacrificing wireless capacity.

3 DESIGN

Figure 5 shows the high-level design of Wi-Fi Goes to Town (WG-

TT). Our AP selection and downlink queue management algorithms

(§3.1) work hand-in-hand to leverage wireless path diversity at

millisecond-level timescales to speed the delivery of downlink traf-

fic as the client transitions through the grey zones of multiple

APs simultaneously. Our block acknowledgement forwarding and

packet de-duplication mechanisms (§3.2) work together with uplink

data delivery to the same path diversity at the same fine-grained

timescales to make 802.11’s frame aggregation block acknowledge-

ments more reliable, also increasing throughput.

3.1 Downlink Packet Flow

For every downlink packet to a certain client, WGTT chooses the

AP best able to deliver the packet to the client (§3.1.1), and then

carefully manages packet queues at all APs (§3.1.2) to ensure the

selected AP delivers the selected packet to the client milliseconds

later.

3.1.1 AP Selection. To operate in the vehicular picocell regime,

our AP selection algorithm needs to be simultaneously accurate

in its packet delivery rate predictions and agile enough to react in

milliseconds. To achieve these goals, we measure link quality with

the Effective SNR [17] (ESNR) metric, computed at each AP from

channel state information (CSI) extracted from a client’s uplink

transmission. Each AP measures CSI on all 56 OFDM subcarriers,

encapsulating these readings into a UDP packet, and delivering
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Client association
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CSI packet

Controller

Control planeData plane
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AP selection
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Access Point (AP)

Queue management
(§3.1.2)

uplink downlink

Block ACK
forwarding
(§3.2.1)

Figure 5: WGTT’s high-level design, divided into control

plane- and data plane-functionality.

this packet to the controller over the Ethernet backhaul. Upon re-

ceiving this packet, the controller extracts the CSI information and

computes ESNR. ESNR takes SNR variations across subcarriers into

account, hence more accurately predicts packet delivery probability

in the presence of a highly frequency-selective channel (i.e. when

multipath reflections are strong).

WGTTAP selection algorithm.WGTT measures the short-term

history of ESNR readings from packets received over each client-AP

link in a sliding window of durationW (we evaluate our choice of

W in §5). For a certain client and AP a, denote the (sorted, mono-

tonically non-decreasing) sequence of La ESNR readings in this

window by

E(a) = [
e1(a), . . . eLa (a)

]
.

After sorting, we select the AP a∗ with the maximal median ESNR

reading in the E(a) window:
a∗ = argmax

a

{
e �La/2� (a)

}
.

Sliding window (10 ms)
Time

AP1

AP2

AP3 18 16 21 23
9 12 11 13
13 15 18 9

9
23 19

13
17 14

13
23 20
12

17 14

median

7

Figure 6: WGTT AP selection: Choosing between three

nearbyAPs,Wi-Fi Goes to Town examines themedian ESNR

reading from each, selecting in this case AP3 with the great-

est median SNR.

3.1.2 APQueue Management. To rapidly switch between APs,

the WGTT controller forwards each downlink packet to all APs

within communication range of the client,1 while allowing just one

at a time (as determined by the AP selection algorithm) to transmit

packets to the client. Each other AP buffers downlink packets in

1Those APs that have received a packet from the client within the AP selection window
W .

NIC

Driver

mac80211

User level

Kernel level

Tx cyclic
queue

NIC internal
queue

Packet
transmission Queueing

mac80211
queue

ieee80211_ops.tx()
stop ioctl

Switching
control

stop pkt start pkt

Cyclic queue of client 1 Cyclic queue of client 2

567
8

0 1

567
8

2k

Tail
Head

2
3 567

8
0 1

45

2k

Tail

Head

2
3

67
8

4

Figure 7: Packet queueing in the WGTT AP.

the cyclic queue shown in Figure 7, which also summarizes all

other locations in the WGTT AP where packets are buffered. Both

packet switching and queue management require an index number

to identify each data packet. In WGTT, we define an m-bit index

number for each data packet, which increments by one for each

packet destined to a certain client. We set m = 12 to guarantee the

uniqueness of each index number in each client’s cyclic buffer.

When the controller switches from one AP to the next (e.g., AP1
to AP2), there are roughly 1,600 (at 50 Mbit/s UDP offered load)

to 2,000 packets (at 90 Mbit/s UDP offered load) backlogged in

AP1’s queues, at various layers of the networking stack as shown

in the figure 7. Unless dequeued, AP1 will attempt to deliver these

backlogged packets to the client, likely failing, thus sacrificing

channel capacity and disrupting any ongoing TCP flows to that

client.

WGTT’s switching protocol. When the controller determines

that the client should be switched from AP1 to AP2, it instructs AP1
to tell AP2 which packets are backlogged in its queues. Since these

backlogged packets are already buffered in AP2’s cyclic queues even

before the switch, AP2 can then deliver them to the client almost

immediately. This switching protocol consists of the following three

steps:

(1) The controller sends a stop(c) control packet to AP1, instructing

it to cease sending to the client c. The stop packet contains the

layer-2 addresses of c and AP2.

(2) After receiving stop(c), AP1 ceases sending to c, and sends to

AP2 a start control packet containing c and the index k of the

first unsent packet destined to c: start(c, k).

(3) After receiving start(c, k), AP2 sends an ack control packet back

to the controller, and begins transmitting packets from its cyclic

queue at index k to the client.2

After the switch, AP2 continues delivering new downlink packets

received from the controller to c. In the absence of control packet

loss, the switch will be accomplished after these three steps. How-

ever, both the control packet and the ack packet may be lost, and

so we set a timeout for the control packet retransmission. If the

controller does not receive the ack within 30 ms, it retransmits the

2The controller will not issue another switch until the current issued switch is
acknowledged.
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stop packet. On the other hand, since the control and ack pack-

ets manage the downlink packet switching, these packets should

be processed promptly for switching delay minimization. In the

WGTT AP, incoming control packets are prioritized, bypassing the

cyclic queue. Control packets are thus given higher priority, so that

they are always been processed ahead of data packets and thereby

minimizing switching delay.

Table 1: Measuring the running time of the switching proto-

col in different data rate settings.

Data rate (Mb/s) 50 60 70 80 90

Mean execution time (ms) 17 19 21 19 17

Standard deviation (ms) 3 5 4 5 3

Running the switching protocol takes over 17 ms on average (as

shown in Table 1), During the time that the switch is happening, we

allow AP1 to send the backlogged packets buffered in its hardware

NIC queue. These packets take 6 ms to deliver, thus although they

are sent over AP1’s inferior link, the capacity loss is minimal.3

Implementing the switch. We modify the ieee80211_ops_tx()

function in the Linux kernel to keep track of the index of the last

packet destined to each client just before it enters the NIC’s hard-

ware queue. When AP1 receives a stop(c) packet from the controller,

it queries the index number for c in the kernel through an ioctl

system call: this is the first unsent packet destined to c (index num-

ber k). The ieee80211_ops_tx() function replies and then monitors

the backlogged packets that flow out of the driver’s transmit cyclic

queue and filters out packets destined to c. Upon receiving the

packet index from the kernel, AP1 sends start(c, k) to AP2.

3.1.3 Packet addressing and tunneling. In the controller, both

the layer-2 and layer-3 headers of the downlink packet have the

destination set to the addresses of the clients. We cannot change

them to the AP’s addresses, otherwise the AP cannot decide which

client the packet should be delivered to, so we tunnel downlink

packets in an IP packet with the AP’s IP address in the destination

field.

3.2 Uplink packet flow

On the uplink, WGTT introduces a new technique, block acknowl-

edgement forwarding, that integrates with frame aggregation to

make block acknowledgements more reliable, reducing retransmis-

sions on the downlink.

3.2.1 Block acknowledgement forwarding. The Wi-Fi block ac-

knowledgement mechanism (first introduced in the 802.11e stan-

dard) improves channel efficiency by aggregating multiple packet

acknowledgements into one frame. The block acknowledgement

(Block ACK) contains a bitmap to selectively acknowledge indi-

vidual frames in a window of packets. When the client moves at

vehicular speed, its Block ACK is prone to loss due to the construc-

tive and destructive wireless multipath fading, especially near the

edges of an individual AP’s coverage. In this case, the AP retrans-

mits all packets that should be acknowledged in the lost Block ACK,

3We intend to further optimize switching time with kernel-level Click cyclic queue
implementations in future work.

hurting throughput and channel utilization. In WGTT, we exploit

path diversity, designing a link-layer protocol to allow APs not

currently talking to the client to forward an overheard Block ACK

to the client’s current AP over the Ethernet backhaul.

Atheros NIC

Kernel

AP2 (adjacent) AP1 (currently associated)
User level

ath_tx_complete_aggr ()

Interface 1
AP mode

Interface 2
Monitor mode

disabled

UDP

Atheros NIC

Kernel
User level

ath_tx_complete_aggr ()

Interface 1
AP mode

Interface 2
Monitor mode

Interfaff ce 2
enabled

Figure 8: WGTT’s Block ACK forwarding design.

Specifically, we create two virtual NIC interfaces for each AP,

with one working in AP mode to handle normal uplink/downlink

packet flows, and another working in monitor mode to overhear

packets and captures block ACKs. The monitor mode interface is

disabled in the AP that the client currently associated with. As

shown in Figure 8, upon receiving a block ACK, AP2 extracts the

layer-2 source address (client’s address), the sequence number of

the first packet that should be acknowledged in this Block ACK, and

the Block ACK bitmap, encapsulating them into a UDP packet, and

forwarding this UDP packet to AP1. Upon receiving the information,

AP1 first checks whether this Block ACK has been received before

(from its ownNIC or from other APs). If so, AP1 drops the forwarded

block ACK. Otherwise, it updates the ath_tx_status data structure

using the received information, and inputs this data structure to

the function ath_tx_complete_aggr()4, where the newly updated

block ACK bitmap is examined. The result is that the effective block

ACK loss rate will decrease.

3.2.2 Packet addressing and tunneling. Uplink packets sent from

a client are received by one or more APs, which encapsulate the

packet in an UDP/IP and 802.3 header, putting the source layer-2

and layer-3 address as the received AP, and the destination host

as the controller. Consequently, the controller can record from

which AP the received packet is sent. The controller then strips

the tunneling header of the packet and de-duplicate packets by

checking the source IP address and the IP sequence number of

incoming packets. To speed up the de-duplication process, we use a

hashset and compose a 48-bit key unique to a specific packet using

the source IP address and the IP identification field of this packet.5

3.2.3 Packet de-duplication. As all APs in the network are suc-

cessfully associated with the client, they all forward uplink packets

heard from the client to the controller, resulting in packet dupli-

cation, which can lead to spurious TCP retransmissions, harming

throughput. Hence the controller needs to de-duplicate uplink pack-

ets before forwarding them to the Internet.

4While all ath functions are specific to the Atheros driver, similar functions can be
found in other drivers due to the generic interface of Linux OS.
5Not all packets have IP header: for those without an IP header, we only consider ARP
packets, where we don’t need de-duplication.
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driving15678 34 2

Figure 9: Experiment setup: we deploy eight WGTT APs on

the third floor of an office building overlooking a side road

with speed limit 25 mph. The radio coverage overlaps be-

tween adjacent APs.

Figure 10: Effective SNR heatmap measured at each AP. In

each heatmap the x-axis refers to distance along the road, y-

axis refers to distance across the road. TheAP radio coverage

overlaps by between 6 m and 10 m.

4 IMPLEMENTATION

We implement the WGTT AP and controller logic on commodity

routers and laptops using the Click modular router [9], and deploy

a testbed on the third floor of an office building overlooking a

side road with speed limit 25 mph (as shown in Figure 9). The

testbed is composed of eight WGTT APs interconnected with each

other through the Ethernet backhaul. The controller connects to

the routers through Ethernet backhaul as well. The router works on

the channel 11 of the 2.4 GHz frequency band, without modification

of the default rate control algorithm. WGTT’s small cell limits the

delay spread to a value similar to an indoor environment. So the

length of the standard Wi-Fi cyclic prefix is sufficient. Figure 10

shows the ESNR heatmap of the road we measured at each AP.

We can see the ESNR distribution is coherent with the location

distribution of eight APs deployed along the roadside.

4.1 Controller

Hardware. The WGTT controller is a Lenovo Thinkpad T430

laptop[45], equipped with a Intel Core i5-3320M CPU, 8 GB DDR3

RAM, and a 160 GB Solid State Drive (SSD). We install two USB

ethernet adaptors on it, one for LAN packet processing and another

(a) (b) (c)

Figure 11: The WGTT AP is composed of (a) a directional

antenna that connected to three ports of TP-Link AP via a

splitter (b). (c): the AP is deployed in front of a window.

for the WAN.

Implementation. The controller runs Ubuntu Linux v14.04 LTS.

We write click elements for our control logic and install rules block-

ing the Linux kernel from receiving any packets received from the

NIC, so Click is the only application with access to the NIC.

4.2 Access Point

Hardware. We build the WGTT AP using a TP-Link N750 AP [46]

equipped with an Atheros AR9344 NIC, which measures the CSI of

each incoming frame and forwards it to the controller for process-

ing. We detach the default omnidirectional antennas of this router

and connect it to a 14 dBi, 21-degree beamwidth Laird directional

antenna [26] using a Mini-Circuits ZN3PD-622W-S+ RF splitter-

combiner (as shown in Figure 11).6 Notice that since the WGTT

software design is hardware-agnostic, it is possible to replace the

directional antenna with small-cell omni-directional antenna.

Implementation. The TP-Link router runs openwrt Chaos Calmer

v15.05.1 [35]. We write click elements for AP control logic and a

click configuration ap.click on it to (i) manage the packet queue and

(ii) encapsulate uplink packets and forward them to the controller.

The Atheros NIC on the TP-Link router computes the CSI of each

uplink packet (using the CSI tool [18]), encapsulating the CSI and

client information into a UDP packet, and delivering this packet to

the controller through the Ethernet.

4.3 Client Association

Like other wireless local area network designs that utilize “thin APs”

coupled with a centralized controller, WGTT APs all share the same

802.11 basic service set identifier (BSSID), and so appear as one AP

to the client. When a client associates with the first AP (e.g. AP1),

WGTT synchronizes the association with all APs in the network. To

achieve this goal, we modify hostapd in the user space of the Linux

wireless system, letting AP1 send the client information (layer-2

address, authorization state etc.) to other APs through the Ethernet

backhaul. Specifically, at the end of the client association with AP1,

the hostapd of this AP will receive an association callback, signal-

ing that hostapd’s association confirmation to the client has been

received. AP1 then moves the client information sta_info struct to a

6As all cables to the splitter-combiner are short and of equal length, this results in one
spatial stream to the client. We leave the design and experimentation of a multiple
spatial stream roadside AP for future work.
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Figure 12: WGTT client association. Each AP shares client

association statewith the others over the Ethernet backhaul.

new hostapd_sta_add_params struct, passing it to the kernel level

mac80211 and the driver. We add code to extract the client informa-

tion within hostapd_sta_add_params struct of AP1, open a TCP

connection to all other APs in the network, and transmit the client

information sta_info to those APs. On the other end, the receiving

AP is listening for this TCP connection. When the TCP connection

is set up, the information in the received packet is transferred back

into a hostapd_sta_add_params struct and passed into mac80211

and the driver on the received AP. Figure 12 illustrates this process.

5 EVALUATION

In this section, we first conduct field studies to evaluate the end-

to-end performance of WGTT and compare it with a performance-

tuned version of the 802.11r fast roaming protocol [22]. We then

present micro-benchmark experiments to provide further insight

into which factors impact WGTT’s performance. After that, we

conduct three real-world case studies to show WGTT’s capability

of handling online video streaming, remote video conferencing, and

web browsing at driving speed.

5.1 Methodology

Three Lenovo L512 laptops with Atheros AR9590 wireless card

serve as clients in our experiments. The client transits through

eight deployed APs at different driving speed, ranging from 5 mph

to 35 mph. For each experiment, we log packet flows sent to and

from both the controller and the client using tcpdump for data

analysis.

Comparison scheme. We implement a performance-tuned ver-

sion of the IEEE 802.11r fast roaming protocol and deploy it on

our testbed for comparison. In most 802.11r implementations, the

client does not switch to another AP until it collects a number

of RSSI readings from the AP it currently associated with, but as

we showed above (§2) this fails in the vehicular picocell regime.

We therefore enhance a combination of the standard 802.11r and

802.11k [21] protocols and our best understanding of centralized

controller WLAN products in the straightforward way we expect

the industry to proceed:

(1) Each AP beacons every 100 ms, from which the client discovers

their presence and estimates RSSI.

(2) We set an RSSI threshold belowwhich a client switches to another

AP with the highest RSSI value once the RSSI of the current AP is
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Figure 13: TCP and UDP throughput when the client moves

at different speeds.

lower than this threshold, with a time hysteresis of one second.

(3) After the first client association, other APs learn the authen-

tication and association information of that client (as current

products based on a centralized controller implement, to the

best of our knowledge) thus can forward to other APs any au-

thentication or association frame from the client in the uplink

direction.

We term this scheme Enhanced 802.11r, using it as a performance

benchmark in the remainder of our evaluation.

5.2 End-to-end Performance

We first evaluate the end-to-end performance of WGTT delivering

bulk TCP and UDP data flows.

5.2.1 Single-client experiments. We examine WGTT’s through-

put at different clientmoving speeds, and test TCP andUDP through-

put of WGTT and the Enhanced 802.11r fast roaming protocol. As

shown in Figure 13, WGTT achieves a slightly higher throughput

than its counterpart in the static case. As the client moves, WGTT

achieves a constantly high throughput at both low (5 mph) and high

(35 mph) moving speeds, with an average throughput of 6.6 Mbits/s

for TCP and 8.7 Mbits/s for UDP. In contrast, Enhanced 802.11r achi-

eves only 2.7 Mbits/s and 3.3 Mbits/s throughput for TCP and UDP

at 5 mph driving speed. When the client at 35 mph, the TCP and

UDP throughput of Enhanced 802.11r further drops to 0.8 Mbits/s,

and 1.9 Mbits/s, respectively.

To better understand the sources of WGTT’s throughput gain

over Enhanced 802.11r, we plot the TCP throughput against time

and a timeseries showing which AP the client is associated with

during its movement in Figure 14. As shown, WGTT keeps switch-

ing from one AP to another at high frequency (around five times

per second), providing the client with the best link at each period of

time. Benefiting from fast link switching,WGTT’s throughputmain-

tains at a relatively stable level (around 5 Mbits/s) throughout the

client’s transition over eight APs. In contrast, the TCP throughput

of Enhanced 802.11r increases as the client moves to the associated

AP, and then drops to zero at about 2.5 s in the experiment as the

client moves out of the AP’s radio range. This is because Enhanced

802.11r fails to switch promptly as the client moves near the edge

of the current AP’s coverage, where the current link deteriorates
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Figure 14: TCP throughput of WGTT and Enhanced 802.11r

during a single client’s 15 mph drive.
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Figure 15: UDP throughput of WGTT and Enhanced 802.11r

during a single client’s 15 mph drive.

significantly. TCP timeout occurs at around 5.86 s (the vertical line

in the figure), causing the TCP connection to break thereafter. We

observe a result with UDP transmission (Figure 15), where WGTT

switches between multiple client-AP links frequently to enjoy the

better link quality, thereby keeping a relatively stable transmission

rate throughout the client’s movement. Enhanced 802.11r switches

only three times during the entire transition period (10 s), achieving

a low and unstable throughput.

WGTT’s link bit rate.We next examine the link bit rate of WGTT

during the client’s movement. In this experiment, the client transits

through eight APs at a constant speed (15 mph) and sends TCP

and UDP packets to the AP during its movement. Figure 16 shows

the CDF of the link bit rate measurements. We find that WGTT

achieves a 90% quantile of around 70 Mbits/s, which is 30 Mbits/s

higher than Enhanced 802.11r.

Accuracy of the AP switching algorithm.We define switching

accuracy of a handover algorithm as the fraction of the time that

the algorithm chooses the optimal AP to deliver the packet, where

the optimal AP is the AP with maximum ESNR to the client at

any instant in time. In this experiment, we send both TCP and
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Figure 16: CDF of the link bit rate of TCP and UDP transmis-

sion. The client moves at 15 mph.

UDP packets at the maximum rate to a vehicle moving at 15 mph

that transits across eight APs, and test the switching accuracy of

WGTT and Enhanced 802.11r. Table 2 shows the result. As shown,

WGTT achieves over 90% switching accuracy for both TCP and

UDP transmissions. In contrast, Enhanced 802.11r’s switching ac-

curacy is only 20.24% for TCP transmission, it then drops further

to 18.72% for UDP transmission. The reason behind this result is

that the optimal link changes from one AP to another rapidly in

the vehicular-picocell regime due to fast fading wireless channels,

while Enhanced 802.11r chooses to switch only when the current

link deteriorates significantly.

Table 2: Switching accuracy ofWGTT and Enhanced 802.11r

for TCP and UDP flows from a single client moving at

15 mph.

WGTT (%) Enhanced 802.11r (%)

TCP 90.12 20.24

UDP 91.38 18.72

Combined with the previous result, this result demonstrates that

contrary to many other wireless networking designs, better packet

switching decisions, instead of physical-layer bit rate adaptation,

are responsible for most of WGTT’s gain.

5.2.2 Multiple-client experiments. Here we test the ability of

WGTT to improve the performance of multiple clients moving on

the road simultaneously. We vary the number of clients from one to

three, measuring per-client TCP and UDP throughput ofWGTT and

the Enhanced 802.11r fast roaming protocol. As shown in Figure 17,

WGTT achieves an average per-client 5.3 Mbits/s TCP throughput

and 8.2 Mbits/s UDP throughput in the single client case, which

is 2.5× and 2.1× of the TCP and UDP throughput achieved by En-

hanced 802.11r. As we gradually increase the number of clients on

road, the throughput gap between WGTT and Enhanced 802.11r

increases to 2.6× and 2.4 × for TCP and UDP transmissions, respec-

tively. The reason behind is that multiple vehicles (clients) moving

around will introduce dynamic multi-path, and so a higher packet

loss rate. Accordingly, the throughput of Enhanced 802.11r drops

significantly. In contrast, WGTT benefits from the uplink diversity:
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each AP overheard the uplink packet will forward it to the server,

resulting in a reduced amount of retransmissions and so a higher

throughput.

1 2 3
0

4

8

12

Number of client

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

TCP − WGTT
TCP − Enhanced 802.11r
UDP − WGTT
UDP − Enhanced 802.11r

Figure 17: Average per-client downlink throughput with dif-

ferent numbers of clients. All clients move at 15 mph.

To demonstrate this, we draw the packet loss rate of three clients’

uplink UDP flow during the client’s transition among eight APs.

We also plot the packet loss rate when the client transmits uplink

packets through only one AP (Enhanced 802.11r) during its transi-

tion. As shown in Figure 18, with a single up link, the packet loss

rate changes abruptly for all these three clients. In contrast, with

multiple up links, the packet loss rate maintains in a very low level

(below 0.02) for these three clients.

0 3 6 9Time (s)
0

0.2
0.4
0.6

0
0.2
0.4
0.6

Pa
ck

et
 lo

ss
 r

at
e

WGTT Enhanced 802.11r

0
0.2
0.4
0.6

Client 2

Client 1

Client 3

Figure 18: Packet loss rate of uplink UDP packets sent by

three mobile clients.

We further test the TCP throughput in three multiple-client sce-

narios: following driving, parallel driving, and driving in opposing

direction, as shown in Figure 19. In each testing, the server sends

UDP packets at a constant rate (15 Mb/s) to the clients moving at

15 mph.

Figure 20 shows the TCP and UDP throughput in these three

testing cases. As shown, we achieve the highest TCP and UDP

throughput in case (c): two cars driving in opposite direction. This

is due to the fact that the two clients stay far way from each other

Figure 19: TCP/UDP throughput measurement testing in

multiple client scenario, including (a) following driving

with a spacing of 3 m; (b) parallel driving, and (c) driving

in opposing direction. The clients move at 15 mph in each

experiment.

during their transition period in this case. Hence each client expe-

riences minimum link contention. We observe that both the lowest

TCP (4.8 Mbits/s) throughput and UDP throughput (5.0 Mbits/s)

appear in parallel driving case (case (b)). This is because the two

clients could carrier sense each other, thus experiencing a higher

link contention. Nevertheless, WGTT achieves consistently better

performance than Enhanced 802.11r fast roaming protocol in all

three multi-client testing cases. This is because WGTT leverages

the link diversity to let all APs forward their overheard packet to

the remote sever, thereby reducing the packet retransmissions.
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Figure 20: TCP/UDP throughput in different multi-client

testing case. The client moves at 15 mph.

5.3 Microbenchmarks

We now present microbenchmarks, aimed at understanding the

impact of certain parameters on our system’s performance.

5.3.1 Choosing a proper window size. WGTT uses a time win-

dow w to compare ESNR readings from different APs (§3.1.1), so

w is critical to the accurateness and agility of our AP selection

algorithm. We do an emulation-based experiment to determinew .

We drive at a constant speed (15 mph) and collect 10 runs of ESNR

data. Based on that, we vary the window size and compute the

average channel capacity loss of 10 test cases. The result is shown

in Figure 21. As shown, the capacity loss decreases as we enlarge

the window size to 10 ms, and then increases as we expand the

window size further. Suggested by the experiment result, we setw
to 10 ms, which achieves the minimal channel capacity loss. We
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further perform a sensitivity analysis ofw at various vehicle speeds

and find that it remains unchanged.
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Figure 21: Capacity loss rate for different window sizes.

5.3.2 Link layer ACK collision rate. As all APs in the network

are simultaneously associated with the client, they all reply with

link layer (block) acknowledgements after hearing an uplink packet,

resulting in potential collisions at the client, and so uplink packet

retransmissions. To understand how frequently link layer acknowl-

edgement collisions happen in our system, we first turn RTS/CTS

off and send a constant-rate stream of UDP packets using iperf3 and

measure the number of uplink retransmissions to find the upper-

bound of the frequency of link layer acknowledgment collisions.

The result is shown in Table 3. Link layer acknowledgement colli-

sions rarely happen in our system, with only 0.001% for 70 Mbits/s

UDP sending rate, and 0.004% for 90 Mbits/s UDP sending rate. We

speculate the reason is that TP-Link AP issues an HT-immediate

block ACK with some backoff. We find that the interval between

the last MPDU and block ACK varies in the range of us instead

of being a fixed time. If backoff is performed, side lobes of our

parabolic antenna prevent link layer acknowledgement collisions

from happening. Given our experiment results, we conclude that

such a small fraction of collision have minimal impact on WGTT’s

throughput.

Table 3: Link layer ACK collision rate at the client side.

Data rate (Mbits/s) 70 80 90

Ack collision rate (%) 0.001 0.003 0.004

5.3.3 Impact of time hysteresis for AP switching. We next exam-

ine the impact of time hysteresis for AP switching on the through-

put. In this experiment, we vary the time hysteresis from 120 ms

down to 40 ms, and let a client transit across eight APs to receive

TCP packets sent from the server. Figure 22 shows the throughput

against time and a timeseries showing which AP the client is associ-

ated with during its movement. As shown, the throughput changes

in a similar trend for the three different time hysteresis settings,

fluctuating due to channel variations but never dropping to zero

due to prompt AP switches, as shown below in the figure. As we

decrease the time hysteresis, we can see the throughput grows grad-

ually from 1.3 Mbits/s to around 6.4 Mbits/s at 2 s. The throughput

gain is due to the fact that the channel condition changes frequently

at driving speed. A smaller time hysteresis renders our switching

algorithm more able to adapt to the fast channel changes, and so

achieving a higher throughput.
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Figure 22: The TCP throughput against time in different and

a timeseries showing which AP the client is associated with

during its movement. The client moves at 15 mph.

5.3.4 Impact of AP density. We now examine the impact of AP

density on the throughput. In this experiment, we vary the driving

speed of the client and measure the UDP throughput in both a dense

and sparse AP deployment area of our testbed. Figure 23 shows

the result. As expected, WGTT achieves a consistently high UDP

throughput in both sparse and dense AP deployment under different

driving speeds. The UDP throughput increases from 6.7 Mbits/s on

average to around 9.3 Mbits/s as the client moves from the area

of low AP density to the area of high AP density. This is due to

the fact WGTT benefits from uplink diversity of nearby APs and

receives packets through multiple paths.
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Figure 23: UDP throughput in areas of different density in

our testbed deployment.
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5.4 Case studies

We next conduct three real-world case studies to examine WGTT’s

performance in streaming applications: online video streaming,

remote video conferencing, and web browsing.

Online video. In this case study, we test WGTT’s ability to reliably

stream video to mobile clients. We employ the video rebuffer ratio

as the metric to measure the video’s quality of experience (QoE).

Video rebuffer measures number of times and the duration of in-

terruptions due to re-buffering. The video rebuffer ratio is defined

as the fraction of rebuffers over the time duration that the client

transits through eight APs. To minimize the impact of Internet

latency on video rebuffers, we cache the video in the local server.

In this experiment, a volunteer is asked to watch a HD video (1280

× 720 resolution) through our testbed. We then vary the driving

speed of the client and test the rebuffer ratio of this video using the

VLC media player [48] and play online streamming via FTP. We set

the pre-buffer length to be 1,500 ms. The result is shown in Table 4.

As shown, WGTT achieves a smoothed video playback with zero

rebuffer ratio in both low (5 mph) and high (20 mph) driving speed.

In contrast, the video rebuffer ratio reaches to 0.69 at 5 mph driving

speed and drops gradually to 0.54 at 20 mph driving speed when the

client transits through APs through Enhanced 802.11r fast roaming

protocol. The decreasing trend of the rebuffer ratio here is due to

the significant decreasing of the transition time at high moving

speed.

Table 4: Video rebuffering ratio at different moving speed.

Client speed (mph) 5 10 15 20

WGTT 0 0 0 0

Enhanced 802.11r 0.69 0.64 0.61 0.54

Remote video conferencing. In this case study, we test WGTT’s

ability to provide reliable video streaming to mobile clients. Unlike

the previous case study, remote video conferencing requires the

mobile client to simultaneously upload and download real-time

video streams, hence have an even higher link quality requirement.

In this experiment, we run a two-user video conference, with one

user on the moving vehicle and the other in a conference room.

Both applications periodically present their fps on the application’s

user interface. We use scrot, a screenshots software to record the

fps every 1 s. We then measure the frames per second (fps) of

the downlink video on each client side and show the CDF of the

averaged value in Figure 24. As shown, we achieve an 85% percentile

of 20 fps using Skype [42] on both 5 mph and 15 mph driving speeds.

The fps increases to 56 when we turn to Google Hangouts [19]. This

is because Google Hangouts automatically reduces image resolution

of each frame.

Web browsing. In this case study, we test WGTT’s ability to load

web pages quickly for a mobile client. We invite one volunteer to

browse the eBay homepage (2.1MB) during its fast transition among

eight APs. We then vary the client moving speed, and measure the

duration of time that the system launches the web browser until

the webpage is fully loaded in the web browser. To minimize the

impact of Internet latency on our measurement result, we store
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Figure 24: CDF of the frame rate of video conferencing in

different moving speed settings.

the webpage on the local server, allowing the client to load the

webpage directly. At each driving speed, we repeat the experiment

10 times and average the result (Table 5). As shown, we achieve a

constantly stable webpage loading time at different driving speeds

when employingWGTT as the default roaming protocol. In contrast,

the webpage loading time increases to around 18 s at 10 mph as

when we change the roaming protocol to Enhanced 802.11r. As

we increase the driving speed further, the client never successfully

loads the whole page during its short driving time across eight APs.

Table 5: Web page loading time at different driving speeds.

Client speed (mph) 5 10 15 20

WGTT 4.44 4.64 4.34 4.47

Enhanced 802.11r 15.49 18.21 ∞ ∞

6 RELATEDWORK

Pack et al. [37] survey much of the older related work in the area;

in this section we focus on newer work. While Wi-Fi handover is a

well-trodden area in name, prior work largely focuses on walking

and stationary scenarios, or sporadic, delay-tolerant patterns of

opportunistic network connectivity while driving. We thus argue

that while still nominally “handover,” the objective of Wi-Fi Goes

to Town qualitatively differs from the objectives of the following

prior work.

6.1 Wi-Fi-based systems

Streamlining AP discovery. Taking handoff itself as a given,

these techniques reduce its latency. Multiscan [3] leverages multi-

ple radios to make a connection to a new AP before breaking the

current one. Syncscan [39] and DeuceScan [7] time-synchronize

APs to accelerate the standard 802.11 handoff process, and Neighbor

Graphs [41] allow APs to provide channel information about their

neighbors, as was later standardized in 802.11k.

Multiple AP association at the link layer. This group of ap-

proaches connects clients to multiple APs simultaneously, switch-

ing packets at the link and/or network layers. FatVAP [24] balances

traffic between multiple APs at time granularities of two seconds,
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and so is designed for clients with good continuous connectivity

to multiple APs at a time. DenseAP [30] targets the same scenario,

updating load metrics every 20 seconds and client locations every

30 seconds. Multiscan [3] equips each client with two radios, allow-

ing it to “pre-associate” with one AP while actively communicating

with another, thus eliminating handoff overhead. The later 802.11k

and 802.11r standards reduce handoff latency, but without the need

for multiple radios. VirtualWiFi (also known as MultiNet) [6] and

Juggler [34] allow clients to associate with more than one AP at a

time, but do not balance transport-layer flows across APs.

SWIMMING [27] is a simulator-based proposal that uses energy

detection to classify any burst of energy of similar length to an

acknowledgement as such. Thus while it may correctly classify

multiple simultaneous ack packets from more than one AP as an

ack, as noted by the authors, energy detection is prone to false

positives resulting in data loss and degrading end-to-end perfor-

mance (based on Matlab simulations). In comparison, Wi-Fi Goes to

Town contributes novel fine-grained AP switching algorithms that

SWIMMING does not anticipate, specifically to handle the vehicu-

lar picocell regime. We experimentally evaluate the prevalence of

downlink ack collisions (§5), showing that the issue has minimum

effect on end-to-end throughput performance. We also claim the

first practical implementation and evaluation in a testbed of an

entire seamless roadside hotspot system.

ViFi [2] is a system targeted at cars, allowing nearby APs to

“salvage” uplink packets from vehicular clients APs, and develops

a probabilistic algorithm for de-duplicating packets on the uplink.

However, ViFi APs have large cell sizes resulting from use of low-

rate 1 Mbit/s bit-rate transmissions from rooftop-mounted omnidi-

rectional antennas, maximizing range, but sacrificing spatial reuse.

MRD [28] leverages diversity reception and the combination of

different parts of the same frame received by multiple APs in the

uplink in order to recover packets. Divert [29] finds that frame loss

history, combined with a hysteresis mechanism to limit the speed

of AP switching yields performance gains for walking-speed clients.

While these techniques share some of our proposed mechanism,

they don’t push the envelope in terms of cell size, nor do they lever-

age fine-grained location at fine timescales to preemptively place

packets at the right access point before the client arrives at that

location, the keys to our proposed method of making the network

more reliable for users on the go.

Approaches at the transport layer. Classic approaches to mobil-

ity at the transport layer include rapidly rebinding TCP endpoints

in response to connectivity changes at the network layer or be-

low, as TCP Migrate [43] proposes, or rerouting packets at the

network layer, as Mobile IP [38] proposes. But these methods are

intended for mobility on the temporal scale of minutes to hours and

longer, in contrast to the much finer timescales of our work. Recent

Multipath extensions to TCP enable its operation over multiple

Internet paths (MP-TCP [15]). Croitoru et al. [11] exploit MP-TCP,

lettering the client associate to multiple nearby APs and send one

subflow over each connection. But again, their approach is tuned

for walking-speed mobility and hence slow to react to link quality

changes: indeed, the authors observe in their experiments a latency

of 1–2 seconds for traffic to shift to a better AP once links change.

Industrial efforts. In addition to, and/or sometimes extending the

802.11 standards for fast handover 802.11r and 802.11k (described

in detail above, §2), multiple Wi-Fi vendors have developed their

own solutions for fast handover of Wi-Fi clients, all of which target

walking speed-mobility, and many of which are not described in

full technical detail in the associated white papers we reference

here.

Like Wi-Fi Goes to Town, commercial offerings from Extricom,

Meru, and Ubiquiti also present multiple APs as one AP to the

client, with Extricom and Meru using a controller to make handoff

decisions, and Ubiquiti lets APs talk to each other to determine the

best one for packet delivering. However, these systems are either at

a high cost (e.g., the controller of Extricom costs over 6,800 usd [14])

or performing worse in fast moving scenario (as we experimen-

tally demonstrated in §2). Linksys, Meraki and Cisco also offer fast

handover APs, but addressing on the fast client authentication.

6.2 Opportunistic, disconnected systems

A large body of work has focused on predicting rough mobility and

connectivity patterns, but operates at much more coarse temporal

(e.g. 10 seconds) and spatial (100 m × 100 m) scales [8, 32, 33] than

Wi-Fi Goes to Town. A 2006 study of vehicular Wi-Fi hotspot access

[4] shows that Wi-Fi hotspots are often usable from the road at

speeds of up to 60 kph, but performance significantly degrades at

speeds above 30 kph. Gass et al. [16] measure the antenna coverage

and packet loss rates at various vehicle speeds without considering

AP switching. Ott et al. [36] measure transmission characteristics of

TCP/UDP packets in a moving vehicle that passes by one or more

APs. However, they do not consider the packet buffering problem

during AP handover. The Cartel system [20] and the QuickWiFi

protocol [13] develop an optimal scanning strategy based on an

a priori distribution of AP channel assignments, and streamline

the 802.11 association process, but do not coordinate traffic flows

between and among roadside APs. Spider [44] uses models of a

vehicular client’s join probability, simultaneously associating with

multiple APs on different channels and exposing a virtual interface

for each AP, like VirtualWiFi. Mobisteer [31] uses large transmit

beam-forming antennas on clients to steer transmissions towards

roadside APs.

7 DISCUSSION

System cost. The WGTT prototype costs around $120 USD per

AP. This cost can be further cut down to $15 USD by building a

dedicated WGTT AP. e.g., using a $5 USD ESP8266 system-on-chip

Wi-Fi chipset, a $5 USD Raspberry Pi Zero [40], and a less than

$5 USD “Pringle Can” antenna [5].

Picocells vs. macrocells. Picocells increase network capacity by

re-using the same frequencies between adjacent APs. In contrast,

due to inter-cell interference, macrocells achieve lower throughput

and spectral efficiency. This in turn reduces the data rate of a user

which is detrimental to the network as a whole.

Multi-channel settings. The current WGTT prototype works on

a single channel. Letting adjacent APs work on different wireless

channels would avoid serious wireless interference and improve the

absolute throughput of the system. However, spectrum efficiency

would then drop significantly. Moreover, the nearby APs working
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on different channels would be unable to forward overheard packets,

resulting in a higher uplink packet loss rate and thus hurt the

throughput.

Large area deployment. The current WGTT prototype consists

of eight APs. In the future, we plan a large deployment and a large-

scale measurement study, e.g., measuring the achievable network

capacity. Network providers are also well-motivated to deploy WG-

TT because they would gain advertising opportunities, and a transit

systemwould gain revenue, either directly through customer billing

or indirectly through deals.

8 CONCLUSION

We have presented Wi-Fi Goes to Town, the first Wi-Fi based road-

side hotspot network designed to operate in a new performance

regime for wireless networks, the vehicular picocell regime. Our

design uses a nearby controller commanding tight control of the

AP array. Our controller and APs cooperate to implement an AP

selection, downlink queue management algorithm, and uplink ac-

knowledgement sharing protocol that work hand-in-hand to lever-

age wireless path diversity to precisely switch downlink traffic, and

make uplink acknowledgements more reliable. Wi-Fi Goes to Town

is the first step in a line of work that will scale out the wireless

capacity of roadside hotspot networks using small cells. Many inter-

esting problems in this performance regime remain open: the choice

of antenna and Wi-Fi chipset technology; the application of MIMO

techniques ranging all the way from basic link-level MIMO to Dis-

tributed multi-user MIMO beamforming; and further mitigation of

inter-AP interference.
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